World Health Organization. COVID-19 vaccine development, Coronavirus Update 37. World Health Organization. 2020 p. 28. Available from: https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update37-vaccine-development-esc0a81735cd754b32b69ed4147cbbddec.pdf?sfvrsn=2581e994_33 cited 10 May 2021.
Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in china — key questions for impact assessment. N Engl J Med. 2020;382(8):692–4.
Article
CAS
PubMed
Google Scholar
Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ cited 2021 Apr 13.
Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev. 2020;34(2):75–80. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0887796320300146).
Article
PubMed
PubMed Central
Google Scholar
de Haan CAM, Rottier PJM. Molecular Interactions in the Assembly of Coronaviruses. Adv Virus Res. 2005;64(January):165–230.
Article
PubMed
PubMed Central
Google Scholar
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58–60.
Article
CAS
PubMed
Google Scholar
Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ, et al. Use of convalescent plasma therapy in two covid-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;35(14):2–9.
Article
Google Scholar
Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan. China J Med Virol. 2020;92(10):1890–901.
Article
CAS
PubMed
Google Scholar
Der LY, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27(1):1–23.
Google Scholar
Greenwood B. The contribution of vaccination to global health: Past, present, and future. Philos Trans R Soc B Biol Sci. 2014;369(1645):20130433.
Article
Google Scholar
World Health Organization. Coronavirus disease 2019 (COVID-19) situation report-73. 2019. Available from: https://apps.who.int/iris/handle/10665/331686?locale-attribute=es&
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593(7858):266–9. Available from: (http://www.nature.com/articles/s41586-021-03470-x).
Article
CAS
PubMed
Google Scholar
Dolgin E. Omicron is supercharging the COVID vaccine booster debate. Nature. 2021; Available from: https://www.nature.com/articles/d41586-021-03592-2
Mbaeyi S, Oliver SE, Collins JP, Godfrey M, Goswami ND, Hadler SC, et al. The Advisory Committee on Immunization Practices’ Interim Recommendations for Additional Primary and Booster Doses of COVID-19 Vaccines — United States, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(44):1545–52. Available from: (http://www.cdc.gov/mmwr/volumes/70/wr/mm7044e2.htm?s_cid=mm7044e2_w).
Article
CAS
PubMed
PubMed Central
Google Scholar
Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y, Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet. 2020;65(12):1075–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: from genome to infectome. Respir Res. 2020;21(1):1–15. https://doi.org/10.1186/s12931-020-01581-z.
Article
CAS
Google Scholar
Verch T, Trausch JJ, Shank-Retzlaff M. Principles of vaccine potency assays. Bioanalysis. 2018;10(3):163–80.
Article
CAS
PubMed
Google Scholar
Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020;382(21):1969–73 Available from: nejm.org.
Article
CAS
PubMed
Google Scholar
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80). 2020;367(6483):1260–3. https://doi.org/10.1126/science.abb2507.
Article
CAS
Google Scholar
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8. https://doi.org/10.1126/science.abb2762.
Article
PubMed
PubMed Central
Google Scholar
Lucchese G. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol. 2020;17(5):539–40. Available from: (http://www.nature.com/articles/s41423-020-0377-z).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3):254. Available from: (https://www.mdpi.com/1999-4915/12/3/254).
Article
CAS
PubMed Central
Google Scholar
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev. 2020;35(January):43–9. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S1526054220300956).
PubMed
PubMed Central
Google Scholar
Jones Holland J. Notes On R0. Available from: https://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf cited 17 Aug 2020
Kwok KO, Lai F, Wei WI, Wong SYS, Tang JWT. Herd immunity – estimating the level required to halt the COVID-19 epidemics in affected countries. J Infect. 2020;80(6):e32-3. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0163445320301547).
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres I, Lopez-Cevallos D, Artaza O, Profeta B, Kang J, Machado CV. Vaccine scarcity in LMICs is a failure of global solidarity and multilateral instruments. Lancet. 2021;397(10287):1804. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S014067362100893X).
Article
CAS
PubMed
PubMed Central
Google Scholar
Usher AD. COVID-19 vaccines for all? Lancet. 2020;395(10240):1822–3. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0140673620313544).
Article
CAS
PubMed
PubMed Central
Google Scholar
Staff R. Amnesty: rich countries have bought too many COVID-19 vaccines. Reuters. 2020; Available from: https://www.reuters.com/article/health-coronavirus-vaccines-idINKBN28J1BY
Berkley S. COVAX explained. Gavi, the Vaccine Alliance. 2020; Available from: https://www.gavi.org/vaccineswork/covax-explained
Coronavirus (COVID-19) Vaccinations. Available from: https://ourworldindata.org/covid-vaccinations
Maxmen A. The fight to manufacture COVID vaccines in lower-income countries. Nature. 2021;597(7877):455–7. Available from: (https://www.nature.com/articles/d41586-021-02383-z).
Article
CAS
PubMed
Google Scholar
The U.S. Food and Drug Administration. Vaccine Development – 101. Available from: https://www.fda.gov/vaccines-blood-biologics/development-approval-process-cber/vaccine-development-101 cited 14 Feb 2021.
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100. https://doi.org/10.1038/s41577-020-00479-7.
Article
CAS
PubMed
Google Scholar
Centers for Disease Control and Prevention (CDC). Immunization: The Basics. Available from: https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm
Anderson RM, Vegvari C, Truscott J, Collyer BS. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet. 2020;396(10263):1614–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallory ML, Lindesmith LC, Baric RS. Vaccination-Induced Herd Immunity: Successes and challenges. J Allergy Clin Immunol. 2019;142(1):64–6.
Article
Google Scholar
World Health Organization. How do vaccines work? Available from: https://www.who.int/news-room/feature-stories/detail/how-do-vaccines-work cited 20 Jan 2021.
Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity. 2020;53(2):248–63. https://doi.org/10.1016/j.immuni.2020.07.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol. 2020;11(July):1–26. https://doi.org/10.3389/fimmu.2020.01817/full.
Article
Google Scholar
Sridhar S, Brokstad K, Cox R. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines. 2015;3(2):373–89. Available from: (http://www.mdpi.com/2076-393X/3/2/373).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lugade AA, Bharali DJ, Pradhan V, Elkin G, Mousa SA, Thanavala Y. Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity. Nanomedicine Nanotechnol Biol Med. 2013;9(7):923–34. Available from: (https://www.sciencedirect.com/science/article/pii/S1549963413001548).
Article
CAS
Google Scholar
van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8):810–2. https://doi.org/10.1038/s41563-020-0746-0.
Article
CAS
PubMed
Google Scholar
Cormier Z. The Second-Generation COVID Vaccines Are Coming. 2021; Available from: https://www.scientificamerican.com/article/the-second-generation-covid-vaccines-are-coming/
Chapman R, Rybicki EP. Use of a Novel Enhanced DNA Vaccine Vector for Preclinical Virus Vaccine Investigation. Vaccines. 2019;7(2). Available from: https://www.mdpi.com/2076-393X/7/2/50
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020;92(5):495–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol. 2020;86:106717. Available from: (https://www.sciencedirect.com/science/article/pii/S1567576920313862).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eidi H, Joubert O, Attik G, Duval RE, Bottin MC, Hamouia A, et al. Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. Int J Pharm. 2010;396(1):156–65. Available from: (https://www.sciencedirect.com/science/article/pii/S037851731000414X).
Article
CAS
PubMed
Google Scholar
Eidi H, Joubert O, Némos C, Grandemange S, Mograbi B, Foliguet B, et al. Drug delivery by polymeric nanoparticles induces autophagy in macrophages. Int J Pharm. 2012;422(1):495–503. Available from: (https://www.sciencedirect.com/science/article/pii/S0378517311010611).
Article
CAS
PubMed
Google Scholar
Salvador A, Sandgren KJ, Liang F, Thompson EA, Koup RA, Pedraz JL, et al. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int J Pharm. 2015;496(2):371–81. Available from: (https://www.sciencedirect.com/science/article/pii/S0378517315303033).
Article
CAS
PubMed
Google Scholar
The National Institute for Public Health and the Environment. COVID-19 vaccination. Available from: https://www.rivm.nl/en/novel-coronavirus-covid-19/vaccine-against-covid-19 cited 2021 Oct 2021.
Le Thanh T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. https://doi.org/10.1038/d41573-020-00073-5.
Article
CAS
Google Scholar
Reuters. COVID-19 tracker. Latin America and the Caribbean. 2022. Available from: https://graphics.reuters.com/world-coronavirus-tracker-and-maps/regions/latin-america-and-the-caribbean/
Reuteurs. COVID-19 Vaccination tracker. 2022. Available from: https://graphics.reuters.com/world-coronavirus-tracker-and-maps/vaccination-rollout-and-access/.
Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, et al. Coronavirus Pandemic (COVID-19). 2022. Available from: https://ourworldindata.org/covid-vaccinations?country=COL#citation
Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front Immunol. 2019;2020(11):1–17.
Google Scholar
Roper RL, Rehm KE. SARS vaccines: Where are we? Expert Rev Vaccines. 2009;8(7):887–98.
Article
CAS
PubMed
Google Scholar
Enjuanes L, DeDiego ML, Álvarez E, Deming D, Sheahan T, Baric R. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Res. 2008;133(1):45–62. Available from: (https://www.sciencedirect.com/science/article/pii/S0168170207000640).
Article
CAS
PubMed
Google Scholar
Saif LJ, Wang Q, Vlasova AN, Jung K, Xiao S. Coronaviruses. In: Diseases of Swine. Wiley; 2019. p. 488–523. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/9781119350927.ch31
Schindewolf C, Menachery VD. Middle east respiratory syndrome vaccine candidates: Cautious optimism. Viruses. 2019;11(1):74.
Article
CAS
PubMed Central
Google Scholar
Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge. J Virol. 2011;85(23):12201–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tseng C-T, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus. PLoS One. 2012;7(4):1–13. https://doi.org/10.1371/journal.pone.0035421.
Article
CAS
Google Scholar
Takasuka TE, Walker JA, Bergeman LF, Meulen KAV, Makino SI, Elsen NL, et al. Cell-free translation of biofuel enzymes. Methods Mol Biol. 2014;1118:71–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin J-T, Zhang J-S, Su N, Xu J-G, Wang N, Chen J-T, et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther. 2007;12(7):1107–13. Available from: (http://www.ncbi.nlm.nih.gov/pubmed/18018769).
Article
CAS
PubMed
Google Scholar
Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated the Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccines Immunother. 2016;12(9):2351–6. https://doi.org/10.1080/21645515.2016.1177688.
Article
Google Scholar
Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol. 2018;40:83–94. Available from: (https://www.sciencedirect.com/science/article/pii/S1044532318300678).
Article
PubMed
Google Scholar
Offit PA. The Cutter Incident, 50 Years Later. N Engl J Med. 2005;352(14):1411–2. https://doi.org/10.1056/NEJMp048180.
Article
CAS
PubMed
Google Scholar
Mulligan MJ. An Inactivated Virus Candidate Vaccine to Prevent COVID-19. JAMA. 2020;324(10):943–5. https://doi.org/10.1001/jama.2020.15539.
Article
CAS
PubMed
Google Scholar
Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, et al. Adjuvants for Coronavirus Vaccines. Front Immunol. 2020;11:2896. https://doi.org/10.3389/fimmu.2020.589833.
Article
CAS
Google Scholar
Vaccines. 2020. Available from: https://coronavirus.jhu.edu/vaccines cited 26 Nov 2020.
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science (80-). 2020;369(6499):77–81. Available from: (https://science.sciencemag.org/content/369/6499/77).
Article
CAS
Google Scholar
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol. 2018;31(2):150–8. https://doi.org/10.1089/vim.2017.0146.
Article
CAS
PubMed
Google Scholar
World Health Organization. The different types of COVID-19 vaccines. Available from: https://www.who.int/news-room/feature-stories/detail/the-race-for-a-covid-19-vaccine-explained cited 28 Feb 2021.
Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes. JAMA [Internet]. 2020 Sep 8;324(10):951. Available from: https://jamanetwork.com/journals/jama/fullarticle/2769612
Ada G. Overview of vaccines and vaccination. Mol Biotechnol. 2005;29(3):255–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen JW, Chen JM. Potential of live pathogen vaccines for defeating the COVID-19 pandemic: History and mechanism. J Med Virol. 2020;92(9):1469–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015;479–480:379–92. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0042682215001725).
Article
PubMed
Google Scholar
Ma Z, Li Z, Dong L, Yang T, Xiao S. Reverse genetic systems: Rational design of coronavirus live attenuated vaccines with immune sequelae. In: Advances in Virus Research. 2020. p. 383–416. Available from: https://linkinghub.elsevier.com/retrieve/pii/S006535272030021X
Stern PL. Key steps in vaccine development. Ann Allergy Asthma Immunol. 2020;125(1):17–27. https://doi.org/10.1016/j.anai.2020.01.025.
Article
CAS
PubMed
Google Scholar
Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15(8):646–55.
Article
CAS
PubMed
Google Scholar
Gillim-Ross L, Subbarao K. Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Clin Microbiol Rev. 2006;19(4):614–36. Available from: (https://cmr.asm.org/content/19/4/614).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–23. https://doi.org/10.1002/jmv.25681.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nathanson N, Langmuir AD. The cutter incident. poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the united states during the spring of 1955. ii. relationship of poliomyelitis to cutter vaccine. Am J Hyg. 1963;78(1):29–60.
CAS
PubMed
Google Scholar
Chen Y, Li L. SARS-CoV-2: virus dynamics and host response. Lancet Infect Dis. 2020;20(5):515–6. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S1473309920302358).
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing Y-H, Ni W, Wu Q, Li W-J, Li G-J, Wang W-D, et al. Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J Microbiol Immunol Infect. 2020;53(3):473–80. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S1684118220300815).
Article
CAS
PubMed
PubMed Central
Google Scholar
ThiNhu Thao T, Labroussaa F, Ebert N, V’kovski P, Stalder H, Portmann J, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature. 2020;582(7813):561–5. Available from: (http://www.nature.com/articles/s41586-020-2294-9).
Article
CAS
Google Scholar
Xie X, Muruato A, Lokugamage KG, Narayanan K, Zhang X, Zou J, et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe. 2020;27(5):841-848.e3. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S1931312820302316).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. https://doi.org/10.1186/s12985-019-1182-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014;194:124–37. Available from: (https://www.sciencedirect.com/science/article/pii/S0168170214003025).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamirande EW, DeDiego ML, Roberts A, Jackson JP, Alvarez E, Sheahan T, et al. A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamsters. J Virol. 2008;82(15):7721–4. Available from: (https://jvi.asm.org/content/82/15/7721).
Article
CAS
PubMed
PubMed Central
Google Scholar
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments. Virus Res. 2014;194:191–9. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0168170214003967).
Article
CAS
PubMed
PubMed Central
Google Scholar
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, et al. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell. 2020;79(5):710–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bull JJ. Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it? Virus Evol. 2015;1(1):1–10.
Article
Google Scholar
Shi P, Su Y, Li R, Liang Z, Dong S, Huang J. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res. 2019;265:57–66. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0168170218306257).
Article
CAS
PubMed
PubMed Central
Google Scholar
Draft landscape of Covid-19 candidate vaccines. 2020. Available from: https://www.who.int/docs/default-source/a-future-for-children/novel-coronavirus_landscape_covid-19.pdf?sfvrsn=4d8bd201_1 cited 10 May 2021.
Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, et al. Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front Immunol. 2020;11(October):1–24.
Google Scholar
Gavi. What are whole virus vaccines and how could they be used against COVID-19? 2020. Available from: https://www.gavi.org/vaccineswork/what-are-whole-virus-vaccines-and-how-could-they-be-used-against-covid-19 cited 24 Nov 2020.
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S1044532317300386).
Article
CAS
PubMed
Google Scholar
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, et al. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunol. 2018;7(12):1–15. https://doi.org/10.1080/2162402X.2018.1511506.
Article
Google Scholar
Malonis RJ, Lai JR, Vergnolle O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem Rev. 2020;120(6):3210–29.
Article
CAS
PubMed
Google Scholar
Li W, Joshi M, Singhania S, Ramsey K, Murthy A. Peptide Vaccine: Progress and Challenges. Vaccines. 2014;2(3):515–36. Available from: (http://www.mdpi.com/2076-393X/2/3/515).
Article
CAS
PubMed
PubMed Central
Google Scholar
Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020;52(4):583–9. https://doi.org/10.1016/j.immuni.2020.03.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Francis MJ. Recent Advances in Vaccine Technologies. Vet Clin North Am Small Anim Pract. 2018;48(2):231–41. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0195561617301195).
Article
PubMed
Google Scholar
Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97–109. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0166354214001752).
Article
CAS
PubMed
PubMed Central
Google Scholar
Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Artificial Molecular Clamp: A Novel Device for Synthetic Polymerases. Angew Chemie Int Ed. 2011;50(33):7524–8. https://doi.org/10.1002/anie.201102834.
Article
CAS
Google Scholar
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines. 2015;14(11):1509–23. https://doi.org/10.1586/14760584.2015.1081067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medicago. COVID-19: Medicago’s Development Programs.. Available from: https://www.medicago.com/en/covid-19-programs/ cited 25 Aug 2020
Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines. 2020;8(2):153. Available from: (https://www.mdpi.com/2076-393X/8/2/153).
Article
CAS
PubMed Central
Google Scholar
Jiang T, Gao L, Lu J, Zhang Y-D. ACE2-Ang-(1–7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke. Curr Neuropharmacol. 2013;11(2):209–17. Available from: (http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1570-159X&volume=11&issue=2&spage=209).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross K, Senapati S, Alley J, Darling R, Goodman J, Jefferson M, et al. Single dose combination nanovaccine provides protection against influenza A virus in young and aged mice. Biomater Sci. 2019;7(3):809–21. Available from: (http://xlink.rsc.org/?DOI=C8BM01443D).
Article
CAS
PubMed
Google Scholar
Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics, and molecular patterns. Nat Rev Immunol. 2010;10(11):787–96. Available from: (http://www.nature.com/articles/nri2868).
Article
CAS
PubMed
Google Scholar
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020;182(3):713–7219. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0092867420306954).
Article
CAS
PubMed
PubMed Central
Google Scholar
Baviskar T, Raut D, Bhatt LK. Deciphering Vaccines for COVID-19: where do we stand today? Immunopharmacol Immunotoxicol. 2021;43(1):8–21. https://doi.org/10.1080/08923973.2020.1837867.
Article
CAS
PubMed
Google Scholar
Ura T, Okuda K, Shimada M. Developments in Viral Vector-Based Vaccines. Vaccines. 2014;2(3):624–41. Available from: (http://www.mdpi.com/2076-393X/2/3/624).
Article
PubMed
PubMed Central
Google Scholar
Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, et al. Intranasal Vaccination of Recombinant Adeno-Associated Virus Encoding Receptor-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Spike Protein Induces Strong Mucosal Immune Responses and Provides Long-Term Protection against SARS-. J Immunol. 2008;180(2):948–56.
Article
CAS
PubMed
Google Scholar
Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9(Sep):1963.
Article
PubMed
PubMed Central
Google Scholar
A Study of Ad26.COV2.S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adult Participants (ENSEMBLE). Available from: https://clinicaltrials.gov/ct2/show/NCT04505722 cited 25 Aug 2020
Milligan ID, Gibani MM, Sewell R, Clutterbuck EA, Campbell D, Plested E, et al. Safety and Immunogenicity of Novel Adenovirus Type 26– and Modified Vaccinia Ankara-Vectored Ebola Vaccines. JAMA. 2016;315(15):1610. https://doi.org/10.1001/jama.2016.4218.
Article
CAS
PubMed
Google Scholar
Different COVID-19 Vaccines. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html cited 14 Feb 2020.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0140673620302518).
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11(1):2601. Available from: (http://www.nature.com/articles/s41467-020-16505-0).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol. 2020;92(6):660–6. https://doi.org/10.1002/jmv.25754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weekly epidemiological update - 3 November 2020. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update---3-november-2020 cited 4 Nov 2020
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: Humoral, cellular, and innate response, what’s important? Hum Vaccines Immunother. 2014;10(10):2875–84.
Article
Google Scholar
Dicks MDJ, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A Novel Chimpanzee Adenovirus Vector with Low Human Seroprevalence: Improved Systems for Vector Derivation and Comparative Immunogenicity. PLoS One. 2012;7(7):1–12. https://doi.org/10.1371/journal.pone.0040385.
Article
CAS
Google Scholar
Sanchez-Felipe L, Vercruysse T, Sharma S, Ma J, Lemmens V, Van Looveren D, et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature. 2021;590(7845):320–5.
Article
CAS
PubMed
Google Scholar
Knuchel MC, Marty RR, Morin TNA, Ilter O, Zuniga A, Naim HY. Relevance of a pre-existing measles immunity prior to immunization with a recombinant measles virus vector. Hum Vaccin Immunother. 2013;9(3):599–606. https://doi.org/10.4161/hv.23241.
Article
CAS
PubMed
PubMed Central
Google Scholar
European Medicines Agency. COVID-19 Vaccine Janssen. 2021. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-janssen
The Top 5 COVID-19 Vaccine Candidates Explained [Internet]. Available from: https://labblog.uofmhealth.org/rounds/top-5-covid-19-vaccine-candidates-explained cited 24 Oct 2020.
Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(3):295–304.
Article
CAS
PubMed
Google Scholar
Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy. Biotechnol Adv. 2013;31(2):208–23. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0734975012001826).
Article
CAS
PubMed
Google Scholar
Pandey A, Singh N, Vemula SV, Couëtil L, Katz JM, Donis R, et al. Impact of Preexisting Adenovirus Vector Immunity on Immunogenicity and Protection Conferred with an Adenovirus-Based H5N1 Influenza Vaccine. Subbiah E, editor. PLoS One. 2012;7(3):e33428. https://doi.org/10.1371/journal.pone.0033428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Wyatt LS, Kong W, Moodie Z, Moss B, Nabel GJ. Overcoming Immunity to a Viral Vaccine by DNA Priming before Vector Boosting. J Virol. 2003;77(1):799–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet J-G, et al. Induction of virus-specific cytotoxic T lymphocytesin Vivo liposome-entrapped mRNA. Eur J Immunol. 1993;23(7):1719–22. https://doi.org/10.1002/eji.1830230749.
Article
CAS
PubMed
Google Scholar
Hobernik D, Bros M. DNA Vaccines—How Far From Clinical Use? Int J Mol Sci. 2018;19(11):3605. Available from: (http://www.mdpi.com/1422-0067/19/11/3605).
Article
PubMed Central
Google Scholar
Porter KR, Raviprakash K. DNA Vaccine Delivery and Improved Immunogenicity. Curr Issues Mol Biol. 2017;129–38. Available from: http://www.caister.com/cimb/abstracts/v22/129.html
de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, et al. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect. 2020;22(10):515–24. Available from: (https://www.sciencedirect.com/science/article/pii/S128645792030157X).
Article
PubMed
PubMed Central
Google Scholar
Lazo L, Valdes I, Guillén G, Hermida L, Gil L. Aiming at the heart: the capsid protein of dengue virus as a vaccine candidate. Expert Rev Vaccines. 2019;18(2):161–73. https://doi.org/10.1080/14760584.2019.1574575.
Article
CAS
PubMed
Google Scholar
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. Available from: (http://www.nature.com/articles/nrd.2017.243).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulmer J, Donnelly J, Parker S, Rhodes G, Felgner P, Dwarki V, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745–9. https://doi.org/10.1126/science.8456302.
Article
CAS
PubMed
Google Scholar
Williams J. Vector Design for Improved DNA Vaccine Efficacy, Safety, and Production. Vaccines. 2013;1(3):225–49. Available from: (http://www.mdpi.com/2076-393X/1/3/225).
Article
PubMed
PubMed Central
Google Scholar
Liu M. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines. 2019;7(2):37. Available from: (https://www.mdpi.com/2076-393X/7/2/37).
Article
CAS
PubMed Central
Google Scholar
Callaway E. The race for coronavirus vaccines: a graphical guide. Vol. 580, Nature. England; 2020. p. 576–7.
Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomized, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–20. https://doi.org/10.1016/S0140-6736(17)31665-3.
Article
CAS
PubMed
Google Scholar
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.00594/full
Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv. 2016;13(2):295–310. https://doi.org/10.1517/17425247.2016.1121990.
Article
CAS
PubMed
Google Scholar
Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019 Feb 21;4(4). Available from: https://insight.jci.org/articles/view/123158
Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11(8):711–21. Available from: (http://www.nature.com/articles/3302213).
Article
CAS
PubMed
Google Scholar
Schalk JAC, Mooi FR, Berbers GAM, van Aerts LAGJM, Ovelgönne H, Kimman TG. Preclinical and Clinical Safety Studies on DNA Vaccines. Hum Vaccine. 2006;2(2):45–53. https://doi.org/10.4161/hv.2.2.2620.
Article
CAS
Google Scholar
Tudor D, Dubuquoy C, Gaboriau V, Lefèvre F, Charley B, Riffault S. TLR9 pathway is involved in adjuvant effects of plasmid DNA-based vaccines. Vaccine. 2005;23(10):1258–64. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0264410X04006681).
Article
CAS
PubMed
Google Scholar
Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016;15(3):313–29. https://doi.org/10.1586/14760584.2016.1124762.
Article
CAS
PubMed
Google Scholar
Yang Z, Kong W, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561–4. Available from: (http://www.nature.com/articles/nature02463).
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin C, Wang J, Wei Q, She M, Marasco WA, Jiang H, et al. An animal model of SARS produced by infection ofMacaca mulatta with SARS coronavirus. J Pathol. 2005;206(3):251–9. https://doi.org/10.1002/path.1769.
Article
PubMed
PubMed Central
Google Scholar
He Y, Li J, Li W, Lustigman S, Farzan M, Jiang S. Cross-Neutralization of Human and Palm Civet Severe Acute Respiratory Syndrome Coronaviruses by Antibodies Targeting the Receptor-Binding Domain of Spike Protein. J Immunol. 2006;176(10):6085–92. https://doi.org/10.4049/jimmunol.176.10.6085.
Article
CAS
PubMed
Google Scholar
Cheng VCC, Lau SKP, Woo PCY, Kwok YY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kauffman KJ, Webber MJ, Anderson DG. Materials for nonviral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016;240:227–34. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0168365915302832).
Article
CAS
PubMed
Google Scholar
Coronavirus resource center. Types of COVID-19. Available from: https://coronavirus.jhu.edu/vaccines/reports/types-of-covid-19-vaccines cited 24 Nov 2020.
Trafton A. Explained: Why RNA vaccines for Covid-19 raced to the front of the pack [Internet]. 2020. Available from: https://news.mit.edu/2020/rna-vaccines-explained-covid-19-1211 cited 10 May 2021.
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment Coronavirus (COVID-19). StatPearls. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32150360
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. Available from: (http://www.nature.com/articles/nrd4278).
Article
CAS
PubMed
Google Scholar
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–93. Available from: (http://www.nature.com/articles/s41586-020-2639-4).
Article
CAS
PubMed
Google Scholar
Midoux P, Pichon C. Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. 2015;14(2):221–34. https://doi.org/10.1586/14760584.2015.986104.
Article
CAS
PubMed
Google Scholar
Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W, et al. Leveraging mRNAs sequences to express SARS-CoV-2 antigens in vivo. bioRxiv Prepr Serv Biol. 2020;32:2004452.
Moderna doses the first patient with mRNA-1273 in coronavirus vaccine trial. Available from: https://www.pharmaceutical-business-review.com/news/moderna-mrna-1273-coronavirus-trial/ cited 28 Feb 2021
Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19). Available from: https://clinicaltrials.gov/ct2/show/NCT04283461 cited 28 feb 2021.
Zarghampoor F, Azarpira N, Khatami SR, Behzad-Behbahani A, Foroughmand AM. Improved translation efficiency of therapeutic mRNA. Gene. 2019;707:231–8. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0378111919304706).
Article
CAS
PubMed
Google Scholar
Dolgin E. How COVID unlocked the power of RNA vaccines. 2021; Available from: https://www.nature.com/articles/d41586-021-00019-w
Administration D. The Path for a COVID-19 Vaccine from Research to Emergency Use Authorization. 2021;19. Available from: www.FDA.gov/COVID19vaccines#FDAVaccineFacts
Centers for Disease Control and Prevention (CDC). Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. 2022. Available from: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html#booster-dose
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. N Engl J Med. 2020;383(20):1920–31. https://doi.org/10.1056/NEJMoa2022483.
Article
CAS
PubMed
Google Scholar
Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37. Available from: (https://linkinghub.elsevier.com/retrieve/pii/S0264410X13016319).
Article
PubMed
Google Scholar
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.02224/full
Vaccine BNT162b2 – Conditions of authorisation under Regulation 174 – 2 December 2020, amended on 30 December 2020, 28 January 2021, 30 March 2021, 19 May 2021, 04 June 2021, 29 July 2021, 9 September 2021, 27 September. 2021. Available from: https://www.gov.uk/government/publications/regulatory-approval-of-pfizer-biontech-vaccine-for-covid-19/conditions-of-authorisation-for-pfizerbiontech-covid-19-vaccine
Wang J, Zand MS. The potential for antibody-dependent enhancement of SARS-CoV-2 infection: Translational implications for vaccine development. J Clin Transl Sci. 2021;5(1):e2. Available from: (https://www.cambridge.org/core/product/identifier/S2059866120000394/type/journal_article).
Article
Google Scholar
Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021;22:1–10.